The Role of Microbial Phosphatases on Uranium Mobility in the Subsurface

¹Martial Taillefert (co-PI), Melanie Beazley, Kathleen Salome

²Patricia Sobecky (lead-PI), Robert Martinez

³Samuel Webb

- 1. School of Earth & Atmospheric Sciences, 2. School of Biology Georgia Institute of Technology, Atlanta, GA 30332
- 3. Stanford Synchrotron Research Laboratory, Menlo Park, CA 94025

ERSP Meeting, April 9 2008

Funding: DOE BER Program (Grant # DE-FG02-04ER63906)

Why U(VI) Phosphate?

- Apatites promote the precipitation of U(VI) phosphate in the subsurface (Arey et al., 1999; Fuller et al., 2002; Krestou et al., 2004; Ohnuki et al., 2004; Seaman et al., 2003; Wellman et al., 2008).
- U(VI) phosphate minerals are found in a variety of soils, including those of the ORFRC (Roh et al., 2000), Fernald (Morris et al., 1996), and Hanford sites (Arai et al., 2007).
- U(VI) phosphate minerals are extremely stable at pH > 3 (Ghafar et al., 2002; Krestou et al., 2004; Raicevic et a., 2006)
- U(VI) phosphate precipitation may complement U(VI) reduction in subsurfaces
 - Dissolved U is non-existent at pH < 7 at all pε
 - At high pε and pH, a maximum 10% of U is found as UO₂(HPO₄)₂²⁻ complex

- => low pH and high p ϵ favor precipitation of U(VI) phosphates
- => high pH and high pε favor precipitation of UO₂(OH)_{2(s)}

Effect of pH on U(VI) Speciation

 UO_2^{2+} = 200 μ M, ΣPO_4^{3-} = 1 mM , P_{CO2} = 10^{-3.5}, simulated groundwater

Why U(VI) Phosphate?

- Direct phosphate addition to groundwater is efficient in precipitating chernikovite but also decreases soil permeability (Wellman et al., 2006)
- Addition of organophosphate and polyphosphate compounds may promote the slow kinetics of uranium phosphate precipitation (Nash et al., 1998; Seaman et al., 2003; Wellman et al., 2006; Wellman et al., 2007)
- Mechanism: Hydrolysis
 OH
 HO
 OH
 OH
 OH
- Non-Specific Acid Phosphohydrolases (NSAP) mediate the release of phosphate from organophosphate sources to immobilize toxic metals (Macaskie et al., 1994), including uranium (Macaskie et al., 2000; Powers et al., 2002; Martinez et al., 2007).
- NSAPs exhibit optimal activity at acidic to neutral pH values and hydrolyze a broad array of organophosphoester compounds (Rossolini et al., 1998).
- Objective: Demonstrate that phosphatase activity of subsurface microbes results in the release of sufficient phosphate to precipitate U(VI)

Identifying Potential U-precipitating Phosphatase Phenotypes

Tryptose MUP (UV light)

Site Location	% Isolates with Phosphatase	% Isolates Resistant to
	Phenotypes	Heavy
		Metals
Area 1	31	100
Area 2	38	80
Area 3	66	93
Background	12	100

- Heavy metal resistant subsurface isolates were selected
- Isolates were assayed for phosphatase activity.

- A significant percentage of isolates from contaminated soils (31-66%) exhibited phosphatase-positive phenotypes.
- A strong correlation between heavy metal resistance and phosphatase-positive phenotypes was noted.

Martinez et al., 2006 and 2007

Biomineralization of U(VI) through NSAP Activity

Rahnella sp., Bacillus sp., Arthrobacter sp.

10 mM glycerol-3 phosphate (G3P)

200 μM U(VI) added after 36 hours

Simulated aerobic groundwater at pH 5.5

- Rahnella sp. grows easily, hydrolyzes G3P, and precipitates U(VI) the most efficiently
- Bacillus sp. hydrolyzes G3P and precipitate U(VI) but cells do not grow efficiently
- Arthrobacter sp. does not hydrolyze
 G3P and does not precipitate U(VI) but
 cells do not lose viability

Martinez et al., 2007

Effect of pH on U(VI) precipitation by Rahnella sp.

TEM images of Rahnella sp. during Incubation with G3P and U(VI)

Effect of pH on U(VI) precipitation by Rahnella sp.

Proposed Kinetic Model

- Rahnella hydrolyzes G3P and grows according to standard Monod kinetics
- Phosphate produced distributes between H₂PO₄⁻ and HPO₄²⁻
- The kinetics of precipitation of autunite is influenced by the pH (k₁ and k₂)
- Uranyl is toxic (k₃) and inhibits growth (K_{app}) non-competitively
- Rahnella is able to grow back to full rates once U(VI) precipitates

$$\frac{d[UO_{2}^{2+}]}{dt} = -(k_{1}[H_{2}PO_{4}^{-}] + k_{2}[HPO_{4}^{2-}])[UO_{2}^{2+}] + \frac{R_{\max}[G3P]}{K_{m} + [G3P]}[X]$$

$$\frac{d[X]}{dt} = -(k_{1}[H_{2}PO_{4}^{-}] + k_{2}[HPO_{4}^{2-}])[UO_{2}^{2+}] + \frac{R_{\max}[G3P]}{K_{m} + [G3P]}[X]$$

$$\frac{d[X]}{dt} = -k_{3}f([UO_{2}^{2+}],[X]) + \frac{\mu_{\max}[G3P]}{K_{app} + [G3P]}$$

Anaerobic U(VI) precipitation by Rahnella sp.

Rahnella sp. incubated in simulated anaerobic groundwater with 5 mM NO_3^- at pH = 5.5

- Rahnella sp. respire on nitrate anaerobically.
- G3P hydrolysis is less significant anaerobically.
- U(VI) precipitation is as efficient.
- The combined effect of U(VI) and nitrite appears toxic to the cells.

Effect of solid phase on TPP Hydrolysis

7 mM Glycerol; 3.33 mM TPP with and without Hydrous Fe Oxides (HFO)

At pH 5.5, *Rahnella* sp. efficiently hydrolyzes TPP

At pH 7, chemical hydrolysis is enhanced by iron oxides *and* hydrolysis by *Rahnella* sp. is less efficient

These data suggest that adsorption onto soils may be able to control the release of PO_4^{3-}

Stability of U(VI) Precipitates

- Below pH 7, autunite precipitates are stable, even in the presence of high concentrations of carbonate
- Organophosphate and polyphosphate sources do not affect the stability of autunites significantly

Small Soil Columns from Area 3

20 mM Br⁻; 15 mM NO₃⁻; 5 mM G3P added at day 7; 200 μM UO₂²⁺ added at day 10; Simulated groundwater at pH 5.5 Control: No G3P added

- Natural microbial communities hydrolyze G3P efficiently at pH 5.5
- Reactor remains aerobic even in the presence of 15 mM NO₃⁻
- U(VI) is removed efficiently in the presence of G3P.
 Mechanism remains unknown, but preliminary solid phase extractions show little adsorption.

Conclusions

- Biomineralization of U(VI) phosphate is an attractive alternative strategy to the bioreduction of U(VI) in the subsurface
- Metal resistant strains from the ORFRC survive in the presence of U(VI) in a wide range of pHs, probably by actively precipitating autunite minerals using natural organic P sources
- Autunites formed are stable in the pH range 3-8 provided that carbonate concentrations do not exceed 5 mM.
- Soil column experiments reveal that natural microbial communities can hydrolyze 5 mM G3P and remove U(VI) very efficiently at pH 5.5
- Geochemical conditions at ORFRC site are ideal to precipitate U(VI)
- Proposed experiments will investigate:
 - the efficiency of natural organophosphates (e.g., phytate) to biomineralize U(VI)
 - the role of polyphosphate accumulation in some strains as a natural process that could regulate phosphate release when exposed to U(VI)

Abiotic Controls: Effect of G3P Concentration on U(VI) Removal at Steady-State

- Background ΣPO₄³⁻ increases assymptotically with G3P concentration
- U(VI) solubility decreases as G3P concentration and pH increase but tend to be more soluble at low pH or high G3P concentration

=> Y9 is not responsible for U(VI) precipitation

 To demonstrate U(VI) biomineralization in aerobic conditions, less chemically labile organo-phosphate compounds must be selected.

Solubility of U(VI) with IP6

- In the presence of IP6 at low concentration, ~90% of UO₂²⁺ precipitates with phosphate
- At high concentration, only ~30% precipitates with phosphate

=> a high concentration of phosphate increases the solubility of uranium phosphate

